Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.982
Filtrar
1.
J Mol Biol ; 436(4): 168423, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185325

RESUMO

In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fMet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entrance channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.


Assuntos
Bacteriófago lambda , Escherichia coli , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro , Proteínas Repressoras , Subunidades Ribossômicas Maiores de Bactérias , Proteínas Virais Reguladoras e Acessórias , Escherichia coli/genética , Escherichia coli/virologia , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Virais Reguladoras e Acessórias/genética
2.
Mol Cell ; 83(24): 4600-4613.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096825

RESUMO

In response to the persistent exposure to phage infection, bacteria have evolved diverse antiviral defense mechanisms. In this study, we report a bacterial two-component defense system consisting of a Sir2 NADase and a HerA helicase. Cryo-electron microscopy reveals that Sir2 and HerA assemble into a ∼1 MDa supramolecular octadecamer. Unexpectedly, this complex exhibits various enzymatic activities, including ATPase, NADase, helicase, and nuclease, which work together in a sophisticated manner to fulfill the antiphage function. Therefore, we name this defense system "Nezha" after a divine warrior in Chinese mythology who employs multiple weapons to defeat enemies. Our findings demonstrate that Nezha could sense phage infections, self-activate to arrest cell growth, eliminate phage genomes, and subsequently deactivate to allow for cell recovery. Collectively, Nezha represents a paradigm of sophisticated and multifaceted strategies bacteria use to defend against viral infections.


Assuntos
Caudovirales , Escherichia coli , Adenosina Trifosfatases , Microscopia Crioeletrônica , DNA Helicases , NAD+ Nucleosidase , Escherichia coli/enzimologia , Escherichia coli/virologia
3.
Mol Cell ; 83(24): 4586-4599.e5, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096827

RESUMO

SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD+ upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers. When assembled with SIR2, HerA forms a hexamer and converts SIR2 from a nuclease to an NAD+ hydrolase, representing an unexpected regulatory mechanism mediated by protein assembly. Furthermore, high concentrations of ATP can inhibit NAD+ hydrolysis by the SIR2-HerA complex. Cryo-EM structures of the SIR2-HerA complex reveal a giant supramolecular assembly up to 1 MDa, with SIR2 as a dodecamer and HerA as a hexamer, crucial for anti-phage defense. Unexpectedly, the HerA hexamer resembles a spiral staircase and exhibits helicase activities toward dual-forked DNA. Together, we reveal the supramolecular assembly of SIR2-HerA as a unique mechanism for switching enzymatic activities and bolstering anti-phage defense strategies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sirtuínas , Fagos T , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , NAD , Sirtuínas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo
4.
Science ; 382(6671): 674-678, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943920

RESUMO

Interactions between species catalyze the evolution of multiscale ecological networks, including both nested and modular elements that regulate the function of diverse communities. One common assumption is that such complex pattern formation requires spatial isolation or long evolutionary timescales. We show that multiscale network structure can evolve rapidly under simple ecological conditions without spatial structure. In just 21 days of laboratory coevolution, Escherichia coli and bacteriophage Φ21 coevolve and diversify to form elaborate cross-infection networks. By measuring ~10,000 phage-bacteria infections and testing the genetic basis of interactions, we identify the mechanisms that create each component of the multiscale pattern. Our results demonstrate how multiscale networks evolve in parasite-host systems, illustrating Darwin's idea that simple adaptive processes can generate entangled banks of ecological interactions.


Assuntos
Coevolução Biológica , Colífagos , Escherichia coli , Interações Hospedeiro-Parasita , Colífagos/genética , Escherichia coli/genética , Escherichia coli/virologia , Interações Hospedeiro-Parasita/genética
5.
Nature ; 620(7976): 1054-1062, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587340

RESUMO

The mechanisms by which viruses hijack the genetic machinery of the cells they infect are of current interest. When bacteriophage T4 infects Escherichia coli, it uses three different adenosine diphosphate (ADP)-ribosyltransferases (ARTs) to reprogram the transcriptional and translational apparatus of the host by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD) as a substrate1,2. NAD has previously been identified as a 5' modification of cellular RNAs3-5. Here we report that the T4 ART ModB accepts not only NAD but also NAD-capped RNA (NAD-RNA) as a substrate and attaches entire RNA chains to acceptor proteins in an 'RNAylation' reaction. ModB specifically RNAylates the ribosomal proteins rS1 and rL2 at defined Arg residues, and selected E. coli and T4 phage RNAs are linked to rS1 in vivo. T4 phages that express an inactive mutant of ModB have a decreased burst size and slowed lysis of E. coli. Our findings reveal a distinct biological role for NAD-RNA, namely the activation of the RNA for enzymatic transfer to proteins. The attachment of specific RNAs to ribosomal proteins might provide a strategy for the phage to modulate the host's translation machinery. This work reveals a direct connection between RNA modification and post-translational protein modification. ARTs have important roles far beyond viral infections6, so RNAylation may have far-reaching implications.


Assuntos
ADP Ribose Transferases , Bacteriófago T4 , Proteínas de Escherichia coli , Escherichia coli , NAD , RNA , Proteínas Virais , ADP Ribose Transferases/metabolismo , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virologia , NAD/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , RNA/química , RNA/genética , RNA/metabolismo , Biossíntese de Proteínas , Regulação Bacteriana da Expressão Gênica , Processamento de Proteína Pós-Traducional
6.
Science ; 381(6654): eadg9091, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440661

RESUMO

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Assuntos
Antibacterianos , Bacteriólise , Bacteriófago phi X 174 , Proteínas de Escherichia coli , Escherichia coli , Proteínas Virais , Antibacterianos/metabolismo , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica
7.
J Virol ; 97(6): e0059923, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37306585

RESUMO

Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.


Assuntos
Bacteriófago T4 , Enzimas de Restrição-Modificação do DNA , Escherichia coli , Bacteriófago T4/genética , Sistemas CRISPR-Cas , Escherichia coli/enzimologia , Escherichia coli/virologia , Genoma Viral
8.
Science ; 380(6643): 410-415, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104586

RESUMO

Type VI CRISPR-Cas systems use RNA-guided ribonuclease (RNase) Cas13 to defend bacteria against viruses, and some of these systems encode putative membrane proteins that have unclear roles in Cas13-mediated defense. We show that Csx28, of type VI-B2 systems, is a transmembrane protein that assists to slow cellular metabolism upon viral infection, increasing antiviral defense. High-resolution cryo-electron microscopy reveals that Csx28 forms an octameric pore-like structure. These Csx28 pores localize to the inner membrane in vivo. Csx28's antiviral activity in vivo requires sequence-specific cleavage of viral messenger RNAs by Cas13b, which subsequently results in membrane depolarization, slowed metabolism, and inhibition of sustained viral infection. Our work suggests a mechanism by which Csx28 acts as a downstream, Cas13b-dependent effector protein that uses membrane perturbation as an antiviral defense strategy.


Assuntos
Proteínas de Bactérias , Bacteriófagos , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Prevotella , Clivagem do RNA , RNA Viral , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Bacteriófagos/metabolismo , Bacteriófago lambda/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Prevotella/enzimologia , Prevotella/virologia
9.
Nature ; 615(7953): 720-727, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922599

RESUMO

Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.


Assuntos
Aminoácidos , Escherichia coli , Transferência Genética Horizontal , Código Genético , Interações entre Hospedeiro e Microrganismos , Biossíntese de Proteínas , Viroses , Aminoácidos/genética , Aminoácidos/metabolismo , Códon/genética , Ecossistema , Escherichia coli/genética , Escherichia coli/virologia , Código Genético/genética , Leucina/genética , Leucina/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Serina/genética , Viroses/genética , Viroses/prevenção & controle , Interações entre Hospedeiro e Microrganismos/genética , Organismos Geneticamente Modificados/genética , Genoma Bacteriano/genética , Transferência Genética Horizontal/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Virol ; 97(3): e0158422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779755

RESUMO

Bacteriophages, viruses infecting bacteria, recognize their host with high specificity, binding to either saccharide motifs or proteins of the cell wall of their host. In the majority of bacteriophages, this host recognition is performed by receptor binding proteins (RBPs) located at the extremity of a tail. Interaction between the RBPs and the host is the trigger for bacteriophage infection, but the molecular details of the mechanisms are unknown for most bacteriophages. Here, we present the electron cryomicroscopy (cryo-EM) structure of bacteriophage T5 RBPpb5 in complex with its Escherichia coli receptor, the iron ferrichrome transporter FhuA. Monomeric RBPpb5 is located at the extremity of T5's long flexible tail, and its irreversible binding to FhuA commits T5 to infection. Analysis of the structure of RBPpb5 within the complex, comparison with its AlphaFold2-predicted structure, and its fit into a previously determined map of the T5 tail tip in complex with FhuA allow us to propose a mechanism of transmission of the RBPpb5 receptor binding to the straight fiber, initiating the cascade of events that commits T5 to DNA ejection. IMPORTANCE Tailed bacteriophages specifically recognize their bacterial host by interaction of their receptor binding protein(s) (RBPs) with saccharides and/or proteins located at the surface of their prey. This crucial interaction commits the virus to infection, but the molecular details of this mechanism are unknown for the majority of bacteriophages. We determined the structure of bacteriophage T5 RBPpb5 in complex with its E. coli receptor, FhuA, by cryo-EM. This first structure of an RBP bound to its protein receptor allowed us to propose a mechanism of transmission of host recognition to the rest of the phage, ultimately opening the capsid and perforating the cell wall and, thus, allowing safe channeling of the DNA into the host cytoplasm.


Assuntos
Bacteriófagos , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Bacteriófagos/química , Bacteriófagos/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Ligação Proteica , Microscopia Crioeletrônica , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
11.
Nature ; 612(7938): 132-140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385533

RESUMO

Bacteria have evolved diverse immunity mechanisms to protect themselves against the constant onslaught of bacteriophages1-3. Similar to how eukaryotic innate immune systems sense foreign invaders through pathogen-associated molecular patterns4 (PAMPs), many bacterial immune systems that respond to bacteriophage infection require phage-specific triggers to be activated. However, the identities of such triggers and the sensing mechanisms remain largely unknown. Here we identify and investigate the anti-phage function of CapRelSJ46, a fused toxin-antitoxin system that protects Escherichia coli against diverse phages. Using genetic, biochemical and structural analyses, we demonstrate that the C-terminal domain of CapRelSJ46 regulates the toxic N-terminal region, serving as both antitoxin and phage infection sensor. Following infection by certain phages, newly synthesized major capsid protein binds directly to the C-terminal domain of CapRelSJ46 to relieve autoinhibition, enabling the toxin domain to pyrophosphorylate tRNAs, which blocks translation to restrict viral infection. Collectively, our results reveal the molecular mechanism by which a bacterial immune system directly senses a conserved, essential component of phages, suggesting a PAMP-like sensing model for toxin-antitoxin-mediated innate immunity in bacteria. We provide evidence that CapRels and their phage-encoded triggers are engaged in a 'Red Queen conflict'5, revealing a new front in the intense coevolutionary battle between phages and bacteria. Given that capsid proteins of some eukaryotic viruses are known to stimulate innate immune signalling in mammalian hosts6-10, our results reveal a deeply conserved facet of immunity.


Assuntos
Bacteriófagos , Proteínas do Capsídeo , Escherichia coli , Imunidade Inata , Animais , Antitoxinas/imunologia , Bacteriófagos/imunologia , Proteínas do Capsídeo/imunologia , Escherichia coli/imunologia , Escherichia coli/virologia , Eucariotos/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia
12.
Science ; 378(6617): 240, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264809
13.
J Mol Biol ; 434(21): 167829, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116540

RESUMO

Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.


Assuntos
Bacteriófago P1 , Escherichia coli , Antígenos O , Shigella flexneri , Transdução Genética , Proteínas da Cauda Viral , Escherichia coli/genética , Escherichia coli/virologia , Antígenos O/genética , Antígenos O/fisiologia , Shigella flexneri/genética , Shigella flexneri/virologia , Bacteriófago P1/genética , Bacteriófago P1/fisiologia , Proteínas da Cauda Viral/genética
14.
Proc Natl Acad Sci U S A ; 119(37): e2123092119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067314

RESUMO

Levels of the cellular dNTPs, the direct precursors for DNA synthesis, are important for DNA replication fidelity, cell cycle control, and resistance against viruses. Escherichia coli encodes a dGTPase (2'-deoxyguanosine-5'-triphosphate [dGTP] triphosphohydrolase [dGTPase]; dgt gene, Dgt) that establishes the normal dGTP level required for accurate DNA replication but also plays a role in protecting E. coli against bacteriophage T7 infection by limiting the dGTP required for viral DNA replication. T7 counteracts Dgt using an inhibitor, the gene 1.2 product (Gp1.2). This interaction is a useful model system for studying the ongoing evolutionary virus/host "arms race." We determined the structure of Gp1.2 by NMR spectroscopy and solved high-resolution cryo-electron microscopy structures of the Dgt-Gp1.2 complex also including either dGTP substrate or GTP coinhibitor bound in the active site. These structures reveal the mechanism by which Gp1.2 inhibits Dgt and indicate that Gp1.2 preferentially binds the GTP-bound form of Dgt. Biochemical assays reveal that the two inhibitors use different modes of inhibition and bind to Dgt in combination to yield enhanced inhibition. We thus propose an in vivo inhibition model wherein the Dgt-Gp1.2 complex equilibrates with GTP to fully inactivate Dgt, limiting dGTP hydrolysis and preserving the dGTP pool for viral DNA replication.


Assuntos
Bacteriófago T7 , Proteínas de Escherichia coli , Escherichia coli , GTP Fosfo-Hidrolases , Guanosina Trifosfato , Proteínas Virais , Bacteriófago T7/fisiologia , Microscopia Crioeletrônica , Replicação do DNA , DNA Viral/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Conformação Proteica , Proteínas Virais/química , Replicação Viral
15.
Nat Commun ; 13(1): 4668, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970830

RESUMO

Transcription, in which RNA polymerases (RNAPs) produce RNA from DNA, is the first step of gene expression. As such, it is highly regulated either by trans-elements like protein factors and/or by cis-elements like specific sequences on the DNA. Lambdoid phage HK022 contains a cis-element, put, which suppresses pausing and termination during transcription of the early phage genes. The putRNA transcript solely performs the anti-pausing/termination activities by interacting directly with the E.coli RNAP elongation complex (EC) by an unknown structural mechanism. In this study, we reconstituted putRNA-associated ECs and determined the structures using cryo-electron microscopy. The determined structures of putRNA-associated EC, putRNA-absent EC, and σ70-bound EC suggest that the putRNA interaction with the EC counteracts swiveling, a conformational change previously identified to promote pausing and σ70 might modulate putRNA folding via σ70-dependent pausing during elongation.


Assuntos
Bacteriófago lambda , RNA Polimerases Dirigidas por DNA , RNA , Bacteriófago lambda/genética , Microscopia Crioeletrônica , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , RNA/genética , RNA/metabolismo , Transcrição Gênica
16.
Microbiol Spectr ; 10(3): e0211221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467398

RESUMO

Reviewing the genetics underlying the arms race between bacteria and bacteriophages can offer an interesting insight into the development of bacterial resistance and phage co-evolution. This study shows how the natural development of resistances to the K1F bacteriophage, a phage which targets the K1 capsule of pathogenic Escherichia coli, can come about through insertion sequences (IS). Of the K1F resistant mutants isolated, two were of particular interest. The first of these showed full resistance to K1F and was found to have disruptions to kpsE, the product of which is involved in polysialic acid translocation. The second, after showing an initial susceptibility to K1F which then developed to full resistance, had disruptions to neuC, a gene involved in one of the early steps of polysialic acid biosynthesis. Both of these mutations came with a fitness cost and produced considerable phenotypic differences in the completeness and location of the K1 capsule when compared with the wild type. Sequential treatment of these two K1F resistant mutants with T7 resulted in the production of a variety of isolates, many of which showed a renewed susceptibility to K1F, indicating that these insertion sequence mutations are reversible, as well as one isolate that developed resistance to both phages. IMPORTANCE Bacteriophages have many potential uses in industry and the clinical environment as an antibacterial control measure. One of their uses, phage therapy, is an appealing alternative to antibiotics due to their high specificity. However, as with the rise in antimicrobial resistance (AMR), it is critical to improve our understanding of how resistance develops against these viral agents. In the same way as bacteria will evolve and mutate antibiotic receptors so they can no longer be recognized, resistance to bacteriophages can come about via mutations to phage receptors, preventing phage binding and infection. We have shown that Escherichia coli will become resistant to the K1F bacteriophage via insertion element reshufflings causing null mutations to elements of the polysialic acid biosynthetic cluster. Exposure to the T7 bacteriophage then resulted in further changes in the position of these IS elements, further altering their resistance and sensitivity profiles.


Assuntos
Bacteriófagos , Proteínas de Escherichia coli , Escherichia coli , Bacteriófagos/genética , Elementos de DNA Transponíveis , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Ácidos Siálicos
17.
Microbiol Spectr ; 10(1): e0139321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171008

RESUMO

In order to establish phage therapy as a standard clinical treatment for bacterial infections, testing of every phage to ensure the suitability and safety of the biological compound is required. While some issues have been addressed over recent years, standard and easy-to-use animal models to test phages are still rare. Testing of phages in highly suitable mammalian models such as mice is subjected to strict ethical regulations, while insect larvae such as the Galleria mellonella model suffer from batch-to-batch variations and require manual operator skills to inject bacteria, resulting in unreliable experimental outcomes. A much simpler model is the nematode Caenorhabditis elegans, which feeds on bacteria, a fast growing and easy to handle organism that can be used in high-throughput screening. In this study, two clinical bacterial strains of Escherichia coli, one Klebsiella pneumoniae, and one Enterobacter cloacae strain were tested on the model system together with lytic bacteriophages that we isolated previously. We developed a liquid-based assay, in which the efficiency of phage treatment was evaluated using a scoring system based on microscopy and counting of the nematodes, allowing increasing statistical significance compared to other assays such as larvae or mice. Our work demonstrates the potential to use Caenorhabditis elegans to test the virulence of strains of Klebsiella pneumoniae, Enterobacter cloacae, and EHEC/EPEC as well as the efficacy of bacteriophages to treat or prevent infections, allowing a more reliable evaluation for the clinical therapeutic potential of lytic phages. IMPORTANCE Validating the efficacy and safety of phages prior to clinical application is crucial to see phage therapy in practice. Current animal models include mice and insect larvae, which pose ethical or technical challenges. This study examined the use of the nematode model organism C. elegans as a quick, reliable, and simple alternative for testing phages. The data show that all the four tested bacteriophages can eliminate bacterial pathogens and protect the nematode from infections. Survival rates of the nematodes increased from <20% in the infection group to >90% in the phage treatment group. Even the nematodes with poly-microbial infections recovered during phage cocktail treatment. The use of C. elegans as a simple whole-animal infection model is a rapid and robust way to study the efficacy of phages before testing them on more complex model animals such as mice.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Caenorhabditis elegans/virologia , Terapia por Fagos , Animais , Infecções Bacterianas/microbiologia , Modelos Animais de Doenças , Enterobacter cloacae/fisiologia , Enterobacter cloacae/virologia , Escherichia coli/fisiologia , Escherichia coli/virologia , Humanos , Klebsiella pneumoniae/fisiologia , Klebsiella pneumoniae/virologia
18.
Microbiol Spectr ; 10(1): e0167821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171030

RESUMO

Urinary tract infections (UTIs) are the second most frequent bacterial infections worldwide, with Escherichia coli being the main causative agent. The increase of antibiotic-resistance determinants among isolates from clinical samples, including UTIs, makes the development of novel therapeutic strategies a necessity. In this context, the use of bacteriophages as a therapeutic alternative has been proposed, due to their ability to efficiently kill bacteria. In this work, we isolated and characterized three novel bacteriophages, microbes laboratory phage 1 (MLP1), MLP2, and MLP3, belonging to the Chaseviridae, Myoviridae, and Podoviridae families, respectively. These phages efficiently infect and kill laboratory reference strains and multidrug-resistant clinical E. coli isolates from patients with diagnosed UTIs. Interestingly, these phages are also able to infect intestinal pathogenic Escherichia coli strains, such as enteroaggregative E. coli and diffusely adherent E. coli. Our data show that the MLP phages recognize different regions of the lipopolysaccharide (LPS) molecule, an important virulence factor in bacteria that is also highly variable among different E. coli strains. Altogether, our results suggest that these phages may represent an interesting alternative for the treatment of antibiotic-resistant E. coli. IMPORTANCE Urinary tract infections affect approximately 150 million people annually. The current antibiotic resistance crisis demands the development of novel therapeutic alternatives. Our results show that three novel phages, MLP1, MLP2, and MLP3 are able to infect both laboratory and multidrug-resistant clinical isolates of Escherichia coli. Since these phages (i) efficiently kill antibiotic-resistant clinical isolates of uropathogenic Escherichia coli (UPEC), (ii) recognize different portions of the LPS molecule, and (iii) are able to efficiently infect intestinal pathogenic Escherichia coli hosts, we believe that these novel phages are good candidates to be used as a therapeutic alternative to treat antibiotic-resistant E. coli strains generating urinary tract and/or intestinal infections.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Escherichia coli/virologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro , Humanos , Lipopolissacarídeos , Terapia por Fagos , Podoviridae , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência
19.
Sci Rep ; 12(1): 2458, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165352

RESUMO

The application of bacteriophages as antibacterial agents has many benefits in the "post-antibiotic age". To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the other hand, coinfection (simultaneous infection of one host cell by several phages) might reduce the potential for bacteria to evolve phage resistance, but some antagonistic interactions amongst phages might be detrimental for the outcome of phage cocktail application. With this in mind, we introduce here a new method, which considers the host range and each individual phage-host interaction, to design the phage mixtures that best suppress the target bacteria while minimizing the number of phages to restrict manufacturing costs. Additionally, putative phage-phage interactions in cocktails and phage-bacteria networks are compared as the understanding of the complex interactions amongst bacteriophages could be critical in the development of realistic phage therapy models in the future.


Assuntos
Bacteriófagos/metabolismo , Escherichia coli/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/fisiologia , Staphylococcus aureus/metabolismo , Algoritmos , Escherichia coli/virologia , Especificidade de Hospedeiro , Terapia por Fagos/métodos , Pseudomonas aeruginosa/virologia , Staphylococcus aureus/virologia
20.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215761

RESUMO

Phages utilize lysis systems to allow the release of newly assembled viral particles that kill the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a C-terminal region transmembrane domain, which is different from most known endolysins where a N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell disruption, giving new insight in the understanding of phage life cycles.


Assuntos
Bacteriófagos/genética , Comamonadaceae/virologia , Endopeptidases/metabolismo , Genoma Viral/genética , Sequência de Aminoácidos , Bacteriólise , Bacteriófagos/enzimologia , Bacteriófagos/fisiologia , Biologia Computacional , Endopeptidases/genética , Escherichia coli/virologia , Alinhamento de Sequência , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...